Renewable Energy Alternatives
Permanent URI for this collection
Browse
Browsing Renewable Energy Alternatives by Author "Awino, Celline"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Publication Numerical study of lead free CsSn0.5Ge0.5I3 perovskite solar cell by SCAPS-1D(Elsevier, 2021-12) Nalianya, Milimo Amos; Awino, Celline; Barasa, Henry; Odari, Victor; Gaitho, Francis; Omogo, Benard; Mageto, MaxwellLead free perovskite solar cells (PCS) are becoming a distinctly predominant area of study due to the toxicity and stability hurdles of the lead halide perovskite. Current lead-free perovskites are also plagued with low efficiency. This work is concerned with the design and analysis of CsSnGeI3 that is a viable competitor to lead based perovskites by SCAPS-1D simulator (ver.3.3.08). The primary solar cell’s structure is FTO/PCBM/ CsSn0.5Ge0.5I3 / spiro-OMeTAD/Au which achieved a power conversion efficiency (PCE) of 7.11% [1]. To enhance device performance, the effect of optimizing absorber layer defect density (1 × 1015 cm−3) and thickness (700–800 nm), doping concentration of absorber layer (1 × 1015 cm−3), variation of Electron Transport Material (ETL) and Hole Transport Material (HTL) parameters (effect of CBO and VBO and doping concentration) and potential material options for ETL and HTL are studied. The results of the simulation are as follows; maximum power conversion efficiency (PCE) 18.79%, short circuit current density (Jsc) 27.05 mA/cm2, open circuit voltage (Voc) 0.87 V and fill factor (FF) 79.25%. By choosing appropriate material parameters, improving fabrication and encapsulation processes, CsSn0.5Ge0.5I3 proves to be an environmentally friendly solar cell with high efficiency.Publication Thickness Dependence of Window Layer on CH3NH3PbI3-XClX Perovskite Solar Cell(International Journal of Photoenergy, 2020-07-28) Isoe, Wycliffe; Mageto, Maxwell; Maghanga, Christopher; Mwamburi, Maurice; Odari, Victor; Awino, CellineCH3NH3PbI3-xClx has been studied experimentally and has shown promising results for photovoltaic application. To enhance its performance, this study investigated the effect of varying thickness of FTO, TiO2, and CH3NH3PbI3-xClx for a perovskite solar cell with the structure glass/FTO/TiO2/CH3NH3PbI3-xClx/Spiro-OMeTAD/Ag studied using SCAPS-1D simulator software. The output parameters obtained from the literature for the device were 26.11 mA/cm2, 1.25 V, 69.89%, and 22.72% for Jsc, Voc, FF, and , respectively. The optimized solar cell had a thickness of 100 nm, 50 nm, and 300 nm for FTO, TiO2, and CH3NH3PbI3-xClx layers, respectively, and the device output were 25.79 mA/cm2, 1.45 V, 78.87%, and 29.56% for Jsc, Voc, FF, and , respectively, showing a remarkable increase in FF by 8.98% and 6.84% for solar cell efficiency. These results show the potential of fabricating an improved CH3NH3PbI3-xClx perovskite solar cell.