Energy Security
Permanent URI for this collection
Browse
Browsing Energy Security by Author "Zhao, Yaolin"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Publication Evaluation of candidate materials for SCWR turbine and balance of plant shielding(Elsevier, 2014-12-13) Kebwaro, Jeremiah Monari; Zhao, Yaolin; He, ChaohuiSince the coolant leaving the SCWR core contains an assortment of radioisotopes, it is necessary to identify appropriate materials for shielding ex-core components. Photon attenuation characteristics, photo-neutron production capacity and cost effectiveness of candidate materials were investigated in this study. WinXcom computer code was used for attenuation studies while other properties were surveyed in literature. High Z materials (lead and tungsten) show excellent gamma attenuation properties however they are expensive and could be vulnerable to photo-neutron production if used for shielding turbines or the pressure vessel exit steam-line. Barite concrete which is a moderate attenuator could also be susceptible to photo-neutron production if used for shielding components with high Nitrogen-16 activity. Heavy concretes with iron aggregates on the other hand show fair attenuation and are not susceptible to photo-neutron production in the energy range of photons released from reactor water. In terms of cost, concretes are cheaper and easy to fabricate compared to high Z materials especially when a shield of intricate shape is required. Depending on the available space for the shield, heavy concretes would be the most appropriate materials for shielding the SCWR turbine and balance of plant. However in case of space limitation, their attenuation capacity can be enhanced by introducing high Z materials in reasonable proportions.Publication Investigation of photoneutron and capture gamma-ray production in Pb and W under irradiation from 16N decay radiation(Elsevier, 2015-09-01) Kebwaro, Jeremiah Monari; Zhao, Yaolin; He, ChaohuiLead and tungsten are potential alternative materials for shielding reactor ex-core components with high 16N activity when available space limits application of concrete. Since the two materials are vulnerable to photonuclear reactions, the nature and intensity of the secondary radiation resulting from (γ,n) and (n,γ) reactions when 16N decay radiation interact with these materials need to be well known for effective shielding design. In this study the MCNP code was used to calculate the photoneutron and capture gamma-ray spectra in the two materials when irradiated by 16N decay radiation. It was observed that some of the photoneutrons generated in the two materials lie in the low-energy range which is considered optimum for (n,γ) reactions. Lead is more transparent to the photoneutrons when compared to tungsten. The calculations also revealed that the bremsstrahlung generated by the beta spectrum was not sufficient to trigger any additional photoneutrons. Both energetic and less energetic capture gamma-rays are observed when photoneutrons interact with nuclei of the two materials. Depending on the strength of the 16N source term, the secondary radiation could affect the effectiveness of the shield and need to be considered during design.Publication Simulation of 16O (n, p) 16N reaction rate and nitrogen-16 inventory in a high performance light water reactor with one pass core(Elsevier, 2014-12) Kebwaro, Jeremiah Monari; Zhao, Yaolin; He, ChaohuiThe rate of activation of the isotope 16O to 16N in a typical HPLWR one pass concept was calculated using MCNP code. A mathematical model was used to track the inventory of the radioisotope 16N in a unit mass of coolant traversing the system. The water leaving the moderator channels has the highest activity in the circuit, but due to interaction with fresh coolant at the lower plenum, the activity is downscaled. The calculated core exit activity is higher than values reported in literature for commercial boiling water reactors.