• Facebook
  • Twitter
  • YouTube
  • LinkedIn
  • Staff Mail
  • Staff Portal
  • English
  • Deutsch
  • Español
  • Français
  • Italiano
  • Nederlands
  • Polski
  • Português
  • Log In
    New user? Click here to register. Have you forgotten your password?
  • Collections
  • Browse Repository
  1. Home
  2. Browse by Author

Browsing by Author "Luvitaa S. K"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Physico-chemical Properties of Flour, Dough and Bread from Wheat and Hydrothermally-treated Finger Millet
    (Science Direct, 2020-05) Calvin Onyango; Luvitaa S. K; Guenter Unbehend; Norbert Haase
    Abstract Hydrothermally-treated (HTT) finger millet was prepared by tempering the grains twice with water (10:1) followed by incubation at about 25–30°C in a woven polypropylene sack for 10 days. Hydrothermally-treated finger millet was darker and had higher α-amylase activity and lower starch digestibility than native (NAT) grains. The HTT finger millet was composited with wheat flour and used to prepare bread. Composite dough had higher dough stability, dough development time and degree of softening but lower dough energy, extensibility and resistance to extension than WHE dough. The higher specific volume and lower crumb firmness and chewiness of WHE-HTT compared to WHE-NAT bread was attributed to the high α-amylase activity and water absorption capacity of HTT finger millet. Wheat-HTT bread had higher dietary fibre, phytate and phenolic acid content but the same starch and protein digestibility as WHE bread.
  • Loading...
    Thumbnail Image
    Publication
    Utilisation of Amaranth and Finger Millet as Ingredients in Wheat Dough and Bread for Increased Agro-Food Biodiversity
    (Foods, 2022-03) Onyango Calvin; Luvitaa S. K; Lagat Kibet; Hüsken Alexandra; Smit Inga; Schmidt Marcus
    Abstract Amaranth and finger millet are important food security crops in Africa but show poor bread making ability, even in composite wheat breads. Malting and steaming are promising approaches to improve composite bread quality, which have not been fully explored yet. Therefore, in this study, wheat was blended with native, steamed or malted finger millet or amaranth in the ratio of 70:30. Wheat/native amaranth (WHE-NAM) and wheat/malted amaranth (WHE-MAM) had longer dough development times and higher dough stabilities, water absorption capacities and farinograph quality numbers than wheat/steamed amaranth (WHE-SAM), wheat/native finger millet (WHE-NFM), wheat/steamed finger millet (WHE-SFM) or wheat/malted finger millet (WHE-MFM). The WHE-NAM and WHE-MAM breads had lower crumb firmness and chewiness, higher resilience and cohesiveness and lighter colours than WHE-NFM, WHE-SFM and WHE-MFM. Starch and protein digestibility of composite breads were not different (p > 0.05) from each other and ranged between 95–98% and 83–91%, respectively. Composite breads had higher ash (1.9–2.5 g/100 g), dietary fibre (5.7–7.1 g/100 g), phenolic acid (60–122 mg/100 g) and phytate contents (551–669 mg/100 g) than wheat bread (ash 1.6 g/100 g; dietary fibre 4.5 g/100 g; phenolic acids 59 mg/100 g; phytate 170 mg/100 g). The WHE-NAM and WHE-MAM breads possessed the best crumb texture and nutritional profile among the composite breads.

About Us

  • Mandate
  • Mission & Vision and Core Values
  • Service Charter
  • Board of Trustees
  • Management
  • Give Feedback

Our Programs

  • Multidisciplinary Research
  • Innovation
  • Scientific Events
  • Incubation
  • Strategic Research Interventions
  • Bilateral/Multilateral Research Grants

Find Resources

  • Grants Announcements
  • Careers
  • Shortlisted Concept Notes
  • Tenders
  • Newsletters

Our Partners

British Council
Foreign, Commonwealth & Development Office

© Copyright 2025 - National Research Fund (NRF) Kenya. All rights reserved.

Design by OtCloud