Browsing by Author "Mola, Genene T."
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Publication Germanium quantum dot/nitrogen-doped graphene nanocomposite for high-performance bulk heterojunction solar cells(Royal Society of Chemistry, 2018-06-30) Amollo, Tabitha A.; Mola, Genene T.; Nyamori, Vincent O.This study presents the successful synthesis of a novel nanocomposite, namely a germanium quantum dot/nitrogen-doped graphene nanocomposite (GeQD/NGr), and its use in the modification of the photoactive medium of bulk heterojunction solar cells (BHJ-SCs). The nanocomposite was prepared in two sequential steps. Firstly, a reduced graphene oxide-germanium oxide nanocomposite (rGO-GeO2) was synthesized by microwave-assisted solvothermal reaction. The second step involved simultaneous N-doping of graphene and reduction of GeO2 to obtain the GeQD/NGr nanocomposite by thermal treatment. The nanocomposite consists of highly crystalline, spherical shaped GeQDs with a mean diameter of 4.4 nm affixed on the basal planes of NGr sheets. Poly-3-hexylthiophene (P3HT), (6-6)phenyl-C60-butyric acid methyl ester (PCBM) and GeQD/NGr were used as the photoactive layer blend in the fabrication of BHJ-SCs. Enhanced short-circuit current density (Jsc) and fill factor (FF) is derived from the incorporation of the GeQD/NGr nanocomposite in the active layer. The nanocomposite in the active layer blend serves to ensure effective charge separation and transportation to the respective electrodes. Consequently, an improvement of up to 183% in the power conversion efficiency is achieved in the BHJ-SCs by the GeQD/NGr modification.Publication High-performance organic solar cells utilizing graphene oxide in the active and hole transport layers(Elsevier Ltd, 2018-06-22) Amollo, Tabitha A.; Mola, Genene T.; Nyamori, Vincent O.We have successfully synthesized and employed graphene oxide (GO) to boost photons harvesting and charge transport process in thin film organic solar cells (TFOSCs). The graphene oxide was inlayed in both the P3HT:PCBM-based photoactive medium of the device, as well as, a dopant in PEDOT:PSS hole transport buffer layer (HTL). The parameters of the solar cells produced with the inclusion of GO in the HTL and the active layer results in high short-circuit current densities (Jsc), which translated into high power conversion efficiencies (PCEs). GO in the HTL facilitates charge transport, selective electron blocking and hole injection at the interface for enhanced device performance. On the other hand, the use of GO in the active layer remarkably improves the optical absorption leading to high charge carriers photogeneration requisite to efficient OSCs. Similarly, effective exciton dissociation is energetically favoured in the GO modified active layer devices which corroborated with improved conductivity of the medium that assisted charge carriers transport processes. Enhanced photocurrent has been recorded, as high as 18 mA cm−2, from the TFOSCs by the inlay of GO in the active layer. Consequently, increased PCE of up to 40% and 120% is achieved by the inclusion of GO in the HTL and photoactive layers, respectively.Publication Improved short-circuit current density in bulk heterojunction solar cells with reduced graphene oxide-germanium dioxide nanocomposite in the photoactive layer(Elsevier, 2020) Amollo, Tabitha A.; Mola, Genene T.; Nyamori, Vincent O.In the quest to improve the optical absorption and electrical transport of poly-3-hexylthiophene (P3HT) and (6-6) phenyl-C61-butyric acid methyl ester (PCBM) blend film, reduced graphene oxide-germanium dioxide nanocomposite (rGO-GeO2) was employed in the photoactive layer of thin film organic solar cells. Bulk heterojunction solar cells (BHJ SCs) with rGO-GeO2 composite in the active layer exhibited an increase in power conversion efficiency (PCE) of up to 53%. Significant improvement in the measured photocurrent is achieved by the incorporation of rGO-GeO2 in the active layer. High short-circuit current density (Jsc) of up to 17 mA/cm2 is attained in the BHJ SCs. The high Jsc shows that the inlay of rGO-GeO2 in the active layer facilitates exciton separation and creates percolation pathways for charge transport to the electrodes. Charge separation is energetically favoured by a built-in potential difference between the donor and acceptor phases of the active layer. Hence, the incorporation of rGO-GeO2 composite in the active layer improves its charge photogeneration, separation and transport to yield high Jsc and enhanced PCE.Publication Improved short-circuit current density in bulk heterojunction solar cells with reduced graphene oxide-germanium dioxide nanocomposite in the photoactive layer(Elsevier, 2020-11) Amollo, Tabitha A.; Mola, Genene T.; Nyamori, Vincent O.In the quest to improve the optical absorption and electrical transport of poly-3-hexylthiophene (P3HT) and (6-6) phenyl-C61-butyric acid methyl ester (PCBM) blend film, reduced graphene oxide-germanium dioxide nanocomposite (rGO-GeO2) was employed in the photoactive layer of thin film organic solar cells. Bulk heterojunction solar cells (BHJ SCs) with rGO-GeO2 composite in the active layer exhibited an increase in power conversion efficiency (PCE) of up to 53%. Significant improvement in the measured photocurrent is achieved by the incorporation of rGO-GeO2 in the active layer. High short-circuit current density (Jsc) of up to 17 mA/cm2 is attained in the BHJ SCs. The high Jsc shows that the inlay of rGO-GeO2 in the active layer facilitates exciton separation and creates percolation pathways for charge transport to the electrodes. Charge separation is energetically favoured by a built-in potential difference between the donor and acceptor phases of the active layer. Hence, the incorporation of rGO-GeO2 composite in the active layer improves its charge photogeneration, separation and transport to yield high Jsc and enhanced PCE.Publication Improved short-circuit current density in bulk heterojunction solar cells with reduced graphene oxide-germanium dioxide nanocomposite in the photoactive layer(Elsevier, 2020-11) Amollo, Tabitha A.; Mola, Genene T.; Nyamori, Vincent O.In the quest to improve the optical absorption and electrical transport of poly-3-hexylthiophene (P3HT) and (6-6) phenyl-C61-butyric acid methyl ester (PCBM) blend film, reduced graphene oxide-germanium dioxide nanocomposite (rGO-GeO2) was employed in the photoactive layer of thin film organic solar cells. Bulk heterojunction solar cells (BHJ SCs) with rGO-GeO2 composite in the active layer exhibited an increase in power conversion efficiency (PCE) of up to 53%. Significant improvement in the measured photocurrent is achieved by the incorporation of rGO-GeO2 in the active layer. High short-circuit current density (Jsc) of up to 17 mA/cm2 is attained in the BHJ SCs. The high Jsc shows that the inlay of rGO-GeO2 in the active layer facilitates exciton separation and creates percolation pathways for charge transport to the electrodes. Charge separation is energetically favoured by a built-in potential difference between the donor and acceptor phases of the active layer. Hence, the incorporation of rGO-GeO2 composite in the active layer improves its charge photogeneration, separation and transport to yield high Jsc and enhanced PCE.Publication Organic solar cells: Materials and prospects of graphene for active and interfacial layers(Taylor & Francis group, 2019-06-26) Amollo, Tabitha A.; Mola, Genene T.; Nyamori, Vincent O.Photovoltaics is a portentous alternative to the nonrenewable energy resources. Organic solar cells (OSCs) offer several advantages over inorganic counterparts in terms of low-cost device production, simple solution-based processing, flexibility, light-weight and compatibility with roll-to-roll fabrication. This review comprehensively examines the latest research developments towards high-performance OSCs. Device processing conditions and engineering along with material developments for the active and interfacial layers are examined. Different device structures and their benefits and limitations are highlighted. The interfacial layer materials including the polymers and metal oxides together with their integration and performance in functional OSCs are examined. A salient aspect of this review is the design of donor and acceptor materials to address the optical and electronic properties requirement for optimized device efficacy of OSCs. In this regard, the prospects of tailoring the band gap of donor polymers alongside the adoption of non-fullerene acceptors with complementary optical absorption for improved solar energy harvesting is elucidated. Further, graphene’s feasibility as an active or interfacial layer material is reviewed. Hence, this article provides perspectives and strategies on further development of solution-processable donor, acceptor and interfacial materials for high efficiency devices, required in commercialization of OSCs.Publication Polymer solar cells with reduced graphene oxide–germanium quantum dots nanocomposite in the hole transport layer(Journal of Materials Science: Materials in Electronics, 2018-02-19) Amollo, Tabitha A.; Mola, Genene T.; Nyamori, Vincent O.Reduced graphene oxide–germanium quantum dots (rGO–Ge QDs) nanocomposite has been successfully employed in modifying poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the hole transport layer (HTL) in the preparation of a P3HT:PCBM-based polymer solar cell (PSC). The effect of the surface morphology and the optical transmittance of the PEDOT:PSS/rGO–Ge QDs HTL on the devices’ photovoltaic performance is examined. A significant improvement of up to 50% in the power conversion efficiency is achieved by the incorporation of the composite in the HTL. The modified HTL devices exhibited higher short-circuit current density values which resulted from better transportation and collection of photo-generated charge carriers. The synergistic effect of the high electrical conductivity of the composites and the formation of good ohmic contact at the interface between the anode and the active layer not only facilitates charge carrier transport but also impairs their recombination to yield better photovoltaic performance.Publication Reduced graphene oxide-germanium quantum dot nanocomposite: electronic, optical and magnetic properties(IOP Publishing, 2017-11-13) Amollo, Tabitha A.; Mola, Genene T.; Nyamori, Vincent O.Graphene provides numerous possibilities for structural modification and functionalization of its carbon backbone. Localized magnetic moments can, as well, be induced in graphene by the formation of structural defects which include vacancies, edges, and adatoms. In this work, graphene was functionalized using germanium atoms, we report the effect of the Ge ad atoms on the structural, electrical, optical and magnetic properties of graphene. Reduced graphene oxide (rGO)-germanium quantum dot nanocomposites of high crystalline quality were synthesized by the microwave-assisted solvothermal reaction. Highly crystalline spherical shaped germanium quantum dots, of diameter ranging between 1.6–9.0 nm, are anchored on the basal planes of rGO. The nanocomposites exhibit high electrical conductivity with a sheet resistance of up to 16 Ω sq−1. The electrical conductivity is observed to increase with the increase in Ge content in the nanocomposites. High defect-induced magnetization is attained in the composites via germanium adatoms. The evolution of the magnetic moments in the nanocomposites and the coercivity showed marked dependence on the Ge quantum dots size and concentration. Quantum confinement effects is evidenced in the UV–vis absorbance spectra and photoluminescence emission spectra of the nanocomposites which show marked size-dependence. The composites manifest strong absorption in the UV region, strong luminescence in the near UV region, and a moderate luminescence in the visible region.