Browsing by Author "Ngeno, Emily"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Publication Adsorption of Caffeine and Ciprofloxacin onto Pyrolitically Derived Water Hyacinth Biochar: Isothermal, Kinetic and Thermodynamic Studies(David Publishing, 2016-09-07) Ngeno, Emily; Orata, Francis; Baraza, Danstone; Shikuku, Victor; Kimosop, SellyAdsorption of Caffeine and Ciprofloxacin onto Pyrolitically Derived Water Hyacinth Biochar: Isothermal, Kinetic and Thermodynamic StudiesFull-Text PDFDownload XML 10 ViewsDOI:10.17265/1934-7375/2016.04.006Author(s)Emily Chelangat Ngeno, Francis Orata1, Lilechi Danstone Baraza, Victor Odhiambo Shikuku and Selly Jemutai KimosopAffiliation(s)ABSTRACTIn this work, the adsorptive features of water hyacinth (Eichhornia crassipes) derived biochar for sequestration of ciprofloxacin and caffeine from aqueous solution is reported. The isothermal behaviour, adsorption kinetics, mechanisms and thermodynamic parameters were investigated in batch mode. Langmuir and Freundlich models described the equilibrium adsorption data with regression values > 0.9. The kineticsdata obeyed the pseudo-second-order kinetic law while intraparticle pore diffusion was not the only rate controlling step. The computed thermodynamic parameters, namely change in Gibbs free energy (ΔG), change in enthalpy (ΔH) and change in entropy (ΔS) indicated that the adsorption processes were spontaneous and exothermic with less randomness. pH dependence studies depicted multi-mechanistic adsorption for both compounds and is hypothesized to involve hydrophobic interactions besides other non-coulombic interactions. The findings demonstrate that water hyacinth biochar presents an excellent low cost and environmentally benign adsorbent for mitigation of pharmaceuticals from water with a removal efficiency of above 60 % for caffeine and ciprofloxacin.KEYWORDSAdsorption, ciprofloxacin, caffeine, biochar, water hyacinth.Publication Caffeine and Ciprofloxacin Adsorption from Water onto Clinoptilolite: Linear Isotherms, Kinetics, Thermodynamic and Mechanistic Studies(South African Journal of Chemistry, 2019) Ngeno, Emily; Shikuku, Victor; Orata, Francis; Baraza, Danstone; Kimosop, SellyIn this study, clinoptilolite was used to sequester ciprofloxacin (CIP) and caffeine (CAF), two emergent contaminants, from aqueous solution using batch equilibration method and the effects of contact time, pH, initial contaminant concentration, temperature and adsorbent dosage investigated and herein reported. The adsorption kinetics was described by the pseudo-second-order model (PSO) and pore diffusion was not the sole operative rate-controlling step as depicted by the intraparticle diffusion model. The equilibrium data were modelled using three linear forms of Langmuir equation and Freundlich model and was best fitted by the Lineweaver-Burk linearization of Langmuir equation (type-1). Linearization is shown to induce errors that may lead to discrepancies in parameter values estimation. The derived thermodynamic functions revealed the adsorption processes are exothermic, spontaneous and physical in nature. The adsorption mechanism of CIP is strongly controlled by electrostatic interactions while CAF adsorption is weakly affected by changes in pH. The findings demonstrate that clinoptilolite in its unmodified form is a potential low-cost and eco-friendly adsorbent for removal of pharmaceutically active ingredients from water.Publication Endocrine disrupting chemicals in wastewater treatment plants in Kenya, East Africa: Concentrations, removal efficiency, mass loading rates and ecological impacts(Elsevier, 2023-11-15) Ngeno, Emily; Ongulu, Roselyn; Orata, Francis; Matovu, Henry; Shikuku, Victor; Onchiri, Richard; Mayaka, Abel; Majanga, Eunice; Getenga, Zachary; Gichumbi, Joel; Ssebugere, PatrickThis study investigated the levels, mass loadings, removal efficiency, and associated ecotoxicological risks of selected endocrine disrupting chemicals (EDCs), namely, dibutylphthalate (DBP), diethylhexylphthalate (DEHP), dimethylphthalate (DMP), linuron (LNR) and progesterone (PGT) in wastewater, sludge, and untreated dry biosolid (UDBS) samples from twelve wastewater treatment plants (WWTPs) in nine major towns in Kenya. Analysis was done using high-performance liquid chromatography coupled with triple quadrupole mass spectrometry (LC-MS/MS). All the wastewater influents had quantifiable levels of EDCs with DBP being the most abundant (37.49%) with a range of 4.33 ± 0.63 to 19.68 ± 1.24 μg L−1. DEHP was the most abundant in sludge and accounted for 48.2% ranging between 278.67 and 9243.49 ng g−1 dry weight (dw). In the UDBS samples, DEHP was also the most abundant (40%) of the total EDCs detected with levels ranging from 78.77 to 3938.54 ng g−1 dw. The average removal efficiency per pollutant was as follows: DMP (98.7%) > DEHP (91.7%) > PGT (83.4%) > DBP (77.9%) > LNR (72.2%) which can be attributed to sorption onto the biosolid, biological degradation, photolysis, and phytoremediation. The pH was negatively correlated to the EDC concentrations while total dissolved solids (TDS), chemical oxygen demand (COD), biochemical oxygen demand (BOD5), and electrical conductivity (EC) were positively correlated. The mass loadings were as high as 373.33 g day−1 of DBP in the treatment plants located in densely populated cities. DEHP and PGT had their Risk Quotients (RQs) > 1, posing a high risk to biota. DMP, DBP, and LNR posed medium risks as their RQ values were between 0.1 and 1. EDCs are therefore loaded to environmental compartments through either the effluent that loads these pollutants into the receiving aquatic ecosystem or through the UDBS, which are used as fertilizers in agricultural farmlands causing potential toxicological risks to aquatic and terrestrial life.