• Facebook
  • Twitter
  • YouTube
  • LinkedIn
  • Staff Mail
  • Staff Portal
  • English
  • Deutsch
  • Español
  • Français
  • Italiano
  • Nederlands
  • Polski
  • Português
  • Log In
    New user? Click here to register. Have you forgotten your password?
  • Collections
  • Browse Repository
  1. Home
  2. Browse by Author

Browsing by Author "Norbert Haase"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Nutrient composition, sensory attributes and starch digestibility of cassava porridge modified with hydrothermally-treated finger millet
    (Science Direct, 2020) Calvin Onyango; Susan Karenya Luvitaa; Guenter Unbehend; Norbert Haase
    ABSTRACT Cassava (CAS) porridge has low energy density and is a poor source of several nutrients. Its energy density and nutrient composition is normally improved by blending it with other flours. The aim of this study was to determine the effect of hydrothermally-treated (HTT) finger millet on nutrient composition, sensory attributes and starch digestibility of cassava porridge. Composite flour had higher protein, fibre, lipid and mineral content than cassava flour. The high α-amylase activity of HTT finger millet permitted the quantity of CAS-HTT flour to be raised from 9.5% w/v to 19% w/v without altering the free-flowing drinkable consistency of porridge. Partial substitution of CAS with HTT finger millet had no effect on starch digestibility and tannin content but increased the phytate content of CAS-HTT porridge. Hydrothermally-treated finger millet masked the aroma and colour of cassava resulting in dark-coloured CAS-HTT porridge with a bitter taste.
  • Loading...
    Thumbnail Image
    Publication
    Physico-chemical Properties of Flour, Dough and Bread from Wheat and Hydrothermally-treated Finger Millet
    (Science Direct, 2020-05) Calvin Onyango; Luvitaa S. K; Guenter Unbehend; Norbert Haase
    Abstract Hydrothermally-treated (HTT) finger millet was prepared by tempering the grains twice with water (10:1) followed by incubation at about 25–30°C in a woven polypropylene sack for 10 days. Hydrothermally-treated finger millet was darker and had higher α-amylase activity and lower starch digestibility than native (NAT) grains. The HTT finger millet was composited with wheat flour and used to prepare bread. Composite dough had higher dough stability, dough development time and degree of softening but lower dough energy, extensibility and resistance to extension than WHE dough. The higher specific volume and lower crumb firmness and chewiness of WHE-HTT compared to WHE-NAT bread was attributed to the high α-amylase activity and water absorption capacity of HTT finger millet. Wheat-HTT bread had higher dietary fibre, phytate and phenolic acid content but the same starch and protein digestibility as WHE bread.

About Us

  • Mandate
  • Mission & Vision and Core Values
  • Service Charter
  • Board of Trustees
  • Management
  • Give Feedback

Our Programs

  • Multidisciplinary Research
  • Innovation
  • Scientific Events
  • Incubation
  • Strategic Research Interventions
  • Bilateral/Multilateral Research Grants

Find Resources

  • Grants Announcements
  • Careers
  • Shortlisted Concept Notes
  • Tenders
  • Newsletters

Our Partners

British Council
Foreign, Commonwealth & Development Office

© Copyright 2025 - National Research Fund (NRF) Kenya. All rights reserved.

Design by OtCloud