Browsing by Author "Odari, Benjamin V."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Publication Effects of TiO2 Blocking Layer on Photovoltaic Characteristics of TiO2/Nb2O5 Dye Sensitized Solar Cells(Springer Nature, 2020-09-13) Owino, Brian O.; Nyongesa, Francis W.; Ogacho, Alex A.; Aduda, Bernard O.; Odari, Benjamin V.This study reports on the effect of introducing TiO2 compact layer on the photovoltaic characteristics of TiO2/Nb2O5 composite dye sensitized solar cell. The compact layer was deposited by spray pyrolysis technique. It was observed that introduction of 60 nm thick compact layer improved the short circuit current density Jsc,Open circuit voltage Voc, and efficiency of the cell from 4.9 mA/cm2 to 8.2 mA/cm2, 6.8×10-1 V to 7.2×10-1 V and 1.9 % to 3.4 % respectively compared to traditional cell prepared without compact layer. Electrochemical impedance spectroscopy confirmed an increase in recombination resistance from 5.5×101 Ω.cm2 for bare DSSC to 9.0×101 Ω.cm2 for DSSC with compact layer thereby improving electron lifetime of the cells from 2.5×10-4 s to 386.9×10-4 s.Publication Optical modelling of TCO based FTO/TiO2 multilayer thin films and simulation in hydrogenated amorphous silicon solar cell(Elsevier, 2023-07) Isoe, Wycliffe M.; Mageto, Maxwell J.; Maghanga, Christopher M.; Mwamburi, Maurice M.; Odari, Benjamin V.Hydrogenated Amorphous silicon (a:Si:H) has low amounts of defects making it attractive for photovoltaic applications. To improve power conversion efficiency (PCE) of a:Si:H solar cells, this study investigated the effect of introducing FTO/TiO2 multilayer thin films into its structure to serve as antireflection coating. The multilayer thin films were characterized and optimized by optical simulations using a computer program, GLSIM (glazing simulator). The program was written in FORTRAN and implemented in MATLAB. The multi-Fresnel equations were employed to create the GLSIM program. Then using the program, together with the pairs of real and imaginary values of complex refractive index, n and k respectively, the transmittance and reflectance data of FTO/TiO2 multilayer thin films on glass substrate were computed. The optimized FTO/TiO2 multilayer thin films were then incorporated into silicon solar cell with structure glass/FTO/TiO2/n-a-Si:H/i-a-Si:H/p-a:Si:H/P+-BSF and characterized using SCAPS-1D software. The effect of varying layer thickness on the solar cell performance was also investigated. The optimized solar cell had a thickness of 100 nm, 50 nm, 900 nm, 100 nm, 10μm and 5μm for FTO, TiO2, n-a-Si:H, i-a-Si:H, p-a-Si:H and P+-BSF respectively. The device output performance were 37.96 mA/cm2, 1.34 V, 56.37% and 28.72% for Jsc, Voc, FF and η respectively showing a remarkable improvement in the solar cell performance. These results show potential of fabricating an improved hydrogenated silicon solar cell.