Browsing by Author "Ogari, Zachary"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Publication Application of phytoplankton community structure for ranking the major riverine catchments influencing the pollution status of a lake basin(Wiley, 2020-02-18) Aura, Christopher Mulanda; Odoli, Cyprian; Nyamweya, Chrisphine S.; Njiru, James M.; Musa, Safina; Miruka, Jared Babu; Owili, Monica Ochieng; Omondi, Reuben; Raburu, Phillip; Manyala, Julius; Mwamburi, Job; Ogari, Zachary; Mbaru, Emmanuel K.The present study demonstrates the application of a multi‑metric Phytoplankton Index of Biotic Integrity (PIBI) approach for ranking of major river catchments in the Kenyan part of Lake Victoria on the basis of their pollution status. The index utilizes water quality and zooplankton data, phytoplankton diversity, abundance and attributes, as well as literature information. The rivers were sampled from 2016 to 2018 during the wet season (March) and dry season (July). The separation power of the Mann–Whitney U test (p < .05) qualified eight discriminant metrics for phytoplankton samples into a scoring system of 1, 3 and 5, based on high, fair and slight deviation from the best site, respectively, in development of the final PIBI. The Kuja and Sondu‑Miriu rivers had the highest PIBI, signifying least pollution influence on the lake. In contrast, the Yala and Nzoia rivers exhibited the lowest PIBI, representing the catchments with a higher pollution influence on the lake. The fair to poor integrity classes for the major river catchments in the region signified a deteriorating lakescape. The present study presents the preliminary results of using phytoplankton metrics for development of the Index of Biotic Integrity (IBI) approach in the region as a decision‑making support tool for the effective management and sustainable use of water resources in the lake basin.Publication Composition and design of vegetative filter strips instrumental in improving water quality by mass reduction of suspended sediment, nutrients and Escherichia coli in overland flows in eastern escarpment of Mau Forest, Njoro River Watershed, Kenya(Springer Link, 2016-06-13) Olilo, Casianes; Onyando, Jack; Moturi, Wilkister; Muia, Wairimu; Roegner, Amber; Ogari, Zachary; Ombui, P.; Shivoga, WilliamThis study assessed the effect of vegetative filter strip (VFS) in removal of suspended sediment (SS), total nitrogen, total phosphorus and Escherichia coli (E. coli) in overland flow to improve receiving water quality standards. Four and half kilograms of cowpat manure was applied to the model pasture 14 m beyond the edge of vegetated filter strip (VFS) comprising 10-m Napier grass draining into 20-m Kikuyu grass (VFS II), 10-m Kikuyu grass draining into 20-m Napier grass (VFS III) and native grass mixture of Couch–Buffel (VFS I-control). Overland flow water samples were collected from the sites at positions 0, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 and 30 m along the length of VFSs. E. coli removal by Napier grass VFS was on the order of log unit, which provided an important level of protection and reduced surface-flow concentrations of E. coli to below the 200 (CFU 100 mL−1) recommended water quality standards, but not for nutrients and SS. The Napier grass showed highest efficiency (99.6 %), thus outperforming both Kikuyu grass (85.8 %) and Couch–Buffel grasses VFS (67.9 ± 4.2 %) in removing E. coli from overland flow. The low-level efficiency of native Couch–Buffel grasses in reducing E. coli in overland flow was because of preferential flow. Composition and design of VFS was instrumental and could be applied with a high potential of contracting the uncertainty in improving water quality standards through mass reduction of SS, nutrients and E. coli load in watersheds.Publication Using the Multi-metric Index of Biotic Integrity methodological approach to determine the major river catchment that most pollutes a lake(Aquatic Ecosystem Health, 2021-12-20) Aura, Christopher; Nyamweya, Chrisphine; Njiru, James; Omondi, Reuben; Manyala, Julius; Musa, Safina; Owiti, Horace; Guya, Fredrick; Ongore, Collins; Ogari, Zachary; Mwamburi, Job; Health and Management, Aquatic EcosystemWe present the Multi-metric Index of Biotic Integrity methodological approach that allows for the ranking of major river catchments based on pollution status in the Kenyan portion of Lake Victoria, Africa. The study has a broader applicability to all of Lake Victoria, other African Great Lakes, and all lakes that have riverine discharge. The method presented utilizes water quality and environmental data, local knowledge, and pre-existing literature. The parameters considered were sampled from 2016 to 2018 during the dry season (July sampling) and the wet season (March sampling). Separation power of Mann-Whitney U test (p < 0.05) qualified 11 discriminant metrics for both macroinvertebrate and fish samples into the scoring system of 1, 3 and 5 in the formulation of final Multi-metric Index of Biotic Integrity methodological approach. Rivers in the northern section had lower Multi-metric Index of Biotic Integrity methodological approach scores, as compared to southern counterparts. The Multi-metric Index of Biotic Integrity methodological approach ranking herein was validated by community perceptions on pollution levels. River Nzoia catchment emerged as the most polluted, followed by River Yala, River Kuja, and Sondu-Miriu. Siltation, domestic washing, litter and refuse emerged as the main agents of pollution. Management authorities ought to reinforce a balanced utilization of the vital water resources to minimize future impacts, and promote catchment wide practices that ensure ecological health sustainability of the lake ecosystem.