Browsing by Author "Orata, Francis"
Now showing 1 - 15 of 15
Results Per Page
Sort Options
Publication Adsorption of Caffeine and Ciprofloxacin onto Pyrolitically Derived Water Hyacinth Biochar: Isothermal, Kinetic and Thermodynamic Studies(David Publishing, 2016-09-07) Ngeno, Emily; Orata, Francis; Baraza, Danstone; Shikuku, Victor; Kimosop, SellyAdsorption of Caffeine and Ciprofloxacin onto Pyrolitically Derived Water Hyacinth Biochar: Isothermal, Kinetic and Thermodynamic StudiesFull-Text PDFDownload XML 10 ViewsDOI:10.17265/1934-7375/2016.04.006Author(s)Emily Chelangat Ngeno, Francis Orata1, Lilechi Danstone Baraza, Victor Odhiambo Shikuku and Selly Jemutai KimosopAffiliation(s)ABSTRACTIn this work, the adsorptive features of water hyacinth (Eichhornia crassipes) derived biochar for sequestration of ciprofloxacin and caffeine from aqueous solution is reported. The isothermal behaviour, adsorption kinetics, mechanisms and thermodynamic parameters were investigated in batch mode. Langmuir and Freundlich models described the equilibrium adsorption data with regression values > 0.9. The kineticsdata obeyed the pseudo-second-order kinetic law while intraparticle pore diffusion was not the only rate controlling step. The computed thermodynamic parameters, namely change in Gibbs free energy (ΔG), change in enthalpy (ΔH) and change in entropy (ΔS) indicated that the adsorption processes were spontaneous and exothermic with less randomness. pH dependence studies depicted multi-mechanistic adsorption for both compounds and is hypothesized to involve hydrophobic interactions besides other non-coulombic interactions. The findings demonstrate that water hyacinth biochar presents an excellent low cost and environmentally benign adsorbent for mitigation of pharmaceuticals from water with a removal efficiency of above 60 % for caffeine and ciprofloxacin.KEYWORDSAdsorption, ciprofloxacin, caffeine, biochar, water hyacinth.Publication Analysis of Spatial and Temporal Levels of Heavy Metals in Water, Sediments and Fish in Sosiani River(Science and Education Publishing, 2019-11-01) Shieunda, Ogara; Neyole, Edward; Oluchiri, Stanley; Orata, Francis; AnalysisThe objective of the study was to examine spatial and temporal levels of heavy metals in water, sediments and fish in Sosiani River. This study was an experimental design approach in which a scientific analysis was done involving sample collection, preparation and laboratory work to determine Pb, Cd and Cr concentrations in fish water and sediments. The main Sosiani river flows from the Keiyo escarpment at the far South East through Uasin Gishu plateau to Turbo which is in the North West. The units of analysis used in the study included two species of fish, water and sediment; whereby water and sediment were sampled from eleven sampling locations (SR0 – SR10) and fish from ten sampling points (SR1 – SR10) along river Sosiani catchment. Sample analysis was done using Atomic Absorption Spectrometry. Data analysis was done using the statistical program for social sciences (SPSS) version 23. Inferential (ANOVA), regression and descriptive statistics were used to analyse data. Spatial and temporal levels of heavy metals in water, sediments and fish were the outcomes. In the upper Sosiani, SR3 (Chepkorio) registered the highest lead levels in the wet season of 0.127 mg/l. In both dry and wet seasons, and in all the sites, lead values in water were above the NEMA and WHO thresholds of 0.01 mg/l. In the analysis of cadmium concentrations, it was observed that in wet season water had all 50% of the sites above the NEMA and WHO thresholds while all the sites were had values below the limits during the dry season. Cr in water was high for 90% of the sites. Sediment had the highest lead values of 1.744mg/l. Barbus (Barbusbarbus) fish had high lead, cadmium and Cr values in both wet and dry seasons. In both seasons, catfish (Clariusgariapinus) had low values of lead and cadmium below the NEMA and WHO limits for most of the sites but high levels of Chromium. Spatial and temporal variations in heavy metal concentration were observed between the water, sediment and the two species of fish within the catchment. This study recommended mandatory measures (enforcement) to control the increased heavy metal concentration downstream the basin.Keywords: spatial, temporal, heavy metals, river sosiani catchmentPublication Analysis of Spatial and Temporal Levels of Heavy Metals in Water, Sediments and Fish in Sosiani River(Science and Education publishing (SciEP), 2019-10-09) Shieunda, Ogara Rose; Neyole, Edward; Omuterema, Stanley; Orata, FrancisThe objective of the study was to examine spatial and temporal levels of heavy metals in water, sediments and fish in Sosiani River. This study was an experimental design approach in which a scientific analysis was done involving sample collection, preparation and laboratory work to determine Pb, Cd and Cr concentrations in fish water and sediments. The main Sosiani river flows from the Keiyo escarpment at the far South East through Uasin Gishu plateau to Turbo which is in the North West. The units of analysis used in the study included two species of fish, water and sediment; whereby water and sediment were sampled from eleven sampling locations (SR0 – SR10) and fish from ten sampling points (SR1 – SR10) along river Sosiani catchment. Sample analysis was done using Atomic Absorption Spectrometry. Data analysis was done using the statistical program for social sciences (SPSS) version 23. Inferential (ANOVA), regression and descriptive statistics were used to analyse data. Spatial and temporal levels of heavy metals in water, sediments and fish were the outcomes. In the upper Sosiani, SR3 (Chepkorio) registered the highest lead levels in the wet season of 0.127 mg/l. In both dry and wet seasons, and in all the sites, lead values in water were above the NEMA and WHO thresholds of 0.01 mg/l. In the analysis of cadmium concentrations, it was observed that in wet season water had all 50% of the sites above the NEMA and WHO thresholds while all the sites were had values below the limits during the dry season. Cr in water was high for 90% of the sites. Sediment had the highest lead values of 1.744mg/l. Barbus (Barbusbarbus) fish had high lead, cadmium and Cr values in both wet and dry seasons. In both seasons, catfish (Clariusgariapinus) had low values of lead and cadmium below the NEMA and WHO limits for most of the sites but high levels of Chromium. Spatial and temporal variations in heavy metal concentration were observed between the water, sediment and the two species of fish within the catchment. This study recommended mandatory measures (enforcement) to control the increased heavy metal concentration downstream the basin.Publication Assessment of Available Phosphates and Nitrates Levels in Water and Sediments of River Isiukhu, Kenya(Science and Education Publishing, 2020-06-22) Oremo, Jane; Orata, Francis; Owino, Joseph; Shivoga, WilliamSurface water contamination has become one of the main environmental issues of concern and achallenge to the world population, especially in the developing world, that face potable or usable water security. Inthis study concentrations of available nutrients (PO43- and NO3-) in sediments and water along River Isiukhu, withinLake Victoria catchment area in Kenya are presented. Sediments and water samples were collected from 11sampling sites along River Isiukhu. Available phosphorus was determined by a Spectrophotometric method in whichthe ammonium phosphomolybdate complex, was reduced by ascorbic acid in the presence of antimony to give adistinct blue color complex. Available nitrate was measured spectrophotometrically at 420nm using UVI609PCUV/VIS Spectrophotometer. Physicochemical parameters such as temperature, pH, dissolved oxygen, turbidity,salinity, conductivity, were measured on-site using mobile Hydrolab Quanta. Phosphates concentrations rangedfrom 1.18 ± 0.09 to 3.28 ± 0.5 in water (mg/l) and 2.30 ± 0.03 to 4.51 ± 0.31 in sediment (mg/kg) andnitrates concentrations ranged from 0.15 ± 0.04 to 0.75 ± 0.03 in water (mg/l) and 0.75 ± 0.02 to 1.93 ± 0.05 insediment (mg/kg). The coefficient of variation (CV) depicted that all the physical-chemical parameters measuredvaried widely except pH and temperature. Pearson's correlation matrix was used to show the relationship betweennutrients concentrations in sediments and water and also for the physical-chemical parameters at significantdifferences accepted at P ≤ 0.05 . There was variation in Pearson correlation coefficient analysis for all theparameters tested.Publication Assessment of Environmental Sources, Levels and Distribution of Polycyclic Aromatic Hydrocarbons within Nzoia Catchment Area in Kenya(Scientific Research, 2019-06) Shitandayi, Agripina; Orata, Francis; Lisouza, FredContinuous concerns about Polycyclic Aromatic Hydrocarbons (PAHs) presence in the environment have raised concern because of their toxic effects to various organisms. Sugarcane farming and cane processing industries are major economic activities within River Nzoia catchment area in Kenya. For instance, the sugar industries produce wastes and by products which can cause PAHs emission and environmental contamination in addition to activities related to rapid urbanization that is being observed within the catchment. This study presents a report on sources and distribution of PAHs levels in sugarcane by products waste, sediments, water and soils within the River Nzoia catchment area. Soil and sediment samples were extracted by soxhlet extraction using dichloro-methane and with C-18 catridges. Analyte separation and identification was done by GC-MS. Fourteen PAHs were detected with concentration ranges of; 0.6 μg/L - 80 μg/L for water, 0.01 μg/kg - 1200 μg/kg for soils and 0.13 μg/kg - 19.6 μg/kg for sediments. Bagasse waste had PAHs concentrations in the range of 0.4 - 14 μg/kg, and filter cake in the range of 1.7 - 30 μg/kg. Boiler waters reported the presence of 8 PAHs. The ratio of concentrations of PAHs in boiler water, filter cake and bagasse waste to the soils and water samples within the vicinity to the sugar processing companies did not indicate a point source of contamination; rather it pointed to diffuse sources. The same results were observed for water and sediment samples obtained in the vicinity of waste dumpsite. Variation of PAHs concentrations from sugar manufacturing processes corresponded to the kind and conditions of the processes. Lower molecular weight PAHs dominated in water sample. The presense of benz: 1) pyrene, benz 2) flourancene and Indeno(123,cd)pyrene in both water and sludge soils are of concern since this water is abstracted for domestic use, while sludge soil is used as fertilizer in agricultural farms. Although the levels of PAHs obtained in this study were below the established environment and human health safefty limits, the results underscore the need for mornitoring levels and determining potential sources for PAHs in the environment.Publication Assessment of heavy metals in benthic macroinvertebrates, water and sediments in River Isiukhu, Kenya(Springer, 2019-10-16) Oremo, Jane; Orata, Francis; Owino, Joseph; Shivoga, WilliamA major ecological challenge facing freshwater resources such as rivers is the influx of chemical contaminants from anthropogenic sources. A report on the levels of heavy metals, namely Zn, Cu, Cr, Cd and Pb in benthic macroinvertebrates, sediments and water along River Isiukhu, within Lake Victoria catchment area in Kenya is presented. Families of benthic macroinvertebrates that were investigated included Gerridae, Baetidae and Unionidae. Samples were digested using the appropriate acid combination and analysed using Spectra AAS Varian 200. Physicochemical parameters were measured on-site using mobile Hydrolab Quanta. Pearson’s correlation matrix and post hoc Tukey’s test were used to show the relationship between metal concentrations in the various matrices at significant differences accepted at p ≤ 0.05. Positive correlations were obtained for heavy metal concentrations in sediments and benthic macroinvertebrates with significant correlations observed for Zn (r = 0.655, p = 0.029) and Cu (r = 0.641, p = 0.034). Sediments presented the highest range of heavy metal concentrations compared to water and benthic macroinvertebrates and presented the only matrix with quantifiable Pb levels. The range in heavy metal concentration in benthic macroinvertebrates samples were as follows: Zn, 30.73–46.64, 21.93–38.17, and 26.85–41.69 mg/kg, Cu, 1.17–6.54, 1.11–3.87 and 1.15–5.79 mg/kg, Cr, 0.47–1.61, 0.22–0.74 and 0.25–0.92 mg/kg, for families Unionidae, Baetidae and Gerridae respectively. Heavy metal concentration profile along the river indicated an influx of pollutants from anthropogenic sources due to rapid urbanization along the river.Publication Caffeine and Ciprofloxacin Adsorption from Water onto Clinoptilolite: Linear Isotherms, Kinetics, Thermodynamic and Mechanistic Studies(South African Journal of Chemistry, 2019) Ngeno, Emily; Shikuku, Victor; Orata, Francis; Baraza, Danstone; Kimosop, SellyIn this study, clinoptilolite was used to sequester ciprofloxacin (CIP) and caffeine (CAF), two emergent contaminants, from aqueous solution using batch equilibration method and the effects of contact time, pH, initial contaminant concentration, temperature and adsorbent dosage investigated and herein reported. The adsorption kinetics was described by the pseudo-second-order model (PSO) and pore diffusion was not the sole operative rate-controlling step as depicted by the intraparticle diffusion model. The equilibrium data were modelled using three linear forms of Langmuir equation and Freundlich model and was best fitted by the Lineweaver-Burk linearization of Langmuir equation (type-1). Linearization is shown to induce errors that may lead to discrepancies in parameter values estimation. The derived thermodynamic functions revealed the adsorption processes are exothermic, spontaneous and physical in nature. The adsorption mechanism of CIP is strongly controlled by electrostatic interactions while CAF adsorption is weakly affected by changes in pH. The findings demonstrate that clinoptilolite in its unmodified form is a potential low-cost and eco-friendly adsorbent for removal of pharmaceutically active ingredients from water.Publication Chemicals of Emerging Concern in Surface and Wastewater: A Perspective of Their Fate Within the Lake Victoria Catchment Area of Kenya(IGI Global, 2020-01-01) Orata, FrancisRapid technological advancement in the pharmaceuticals and chemical industry has led to synthesis of compounds used for health/personal care and industrial products in large amounts. These chemicals of emerging concern (CECs) are consequently released into the environment through industrial emissions, disposal processes, and during use and application. Rapid population growth and urbanization within the Lake Victoria catchment region has inserted tremendous pressure on the environment and its resources, thus resulting to potential point and diverse sources of CECs introduction to the environment. Improper waste disposal and conventional wastewater treatment technology that are practiced in the catchment have not helped in prevention and removal of CECs and other pollutants from the environment. This chapter evaluates the occurrence of CECs mainly in surface and wastewater within the Lake Victoria catchment of Kenya and informs on the fate and diverse health effects that come with their presence in the environment.Publication Conventional Wastewater Treatment Plants as a Discharge and Source Point for Biota Exposure to Micro-pollutants(Taylor & Francis Group, 2018-05-18) Orata, FrancisThis chapter provides information on conventional wastewater treatment plants (WWTPs) as a discharge point, through which micro-pollutants (MPs) get into aquatic and terrestrial biota from various points of origin and sources. The chapter analyses the role of WWTPs as a source point for the generation of new MPs. It evaluates the effectiveness of WWTPs in the removal of micro-pollutants throughout the various treatment stages of a WWTP and with examples from various classes of MPs. The MPs are briefly evaluated on basis such as biodegradation, adsorption, persistence and toxicity nature that determine their fate through WWTPs, and recommends effective measures to improve MPs' removal from effluent, in order to prevent MPs' transfer to biota via WWTPs effluent. The first part of this report mainly focuses on MPs that are present in various WWTPs influent and effluent to evaluate the effectiveness of the process. The effectiveness of treatment steps of a conventional WWTP is discussed and then evaluated with regard to their efficiency in MPs' removal from influent.Publication Endocrine disrupting chemicals in wastewater treatment plants in Kenya, East Africa: Concentrations, removal efficiency, mass loading rates and ecological impacts(Elsevier, 2023-11-15) Ngeno, Emily; Ongulu, Roselyn; Orata, Francis; Matovu, Henry; Shikuku, Victor; Onchiri, Richard; Mayaka, Abel; Majanga, Eunice; Getenga, Zachary; Gichumbi, Joel; Ssebugere, PatrickThis study investigated the levels, mass loadings, removal efficiency, and associated ecotoxicological risks of selected endocrine disrupting chemicals (EDCs), namely, dibutylphthalate (DBP), diethylhexylphthalate (DEHP), dimethylphthalate (DMP), linuron (LNR) and progesterone (PGT) in wastewater, sludge, and untreated dry biosolid (UDBS) samples from twelve wastewater treatment plants (WWTPs) in nine major towns in Kenya. Analysis was done using high-performance liquid chromatography coupled with triple quadrupole mass spectrometry (LC-MS/MS). All the wastewater influents had quantifiable levels of EDCs with DBP being the most abundant (37.49%) with a range of 4.33 ± 0.63 to 19.68 ± 1.24 μg L−1. DEHP was the most abundant in sludge and accounted for 48.2% ranging between 278.67 and 9243.49 ng g−1 dry weight (dw). In the UDBS samples, DEHP was also the most abundant (40%) of the total EDCs detected with levels ranging from 78.77 to 3938.54 ng g−1 dw. The average removal efficiency per pollutant was as follows: DMP (98.7%) > DEHP (91.7%) > PGT (83.4%) > DBP (77.9%) > LNR (72.2%) which can be attributed to sorption onto the biosolid, biological degradation, photolysis, and phytoremediation. The pH was negatively correlated to the EDC concentrations while total dissolved solids (TDS), chemical oxygen demand (COD), biochemical oxygen demand (BOD5), and electrical conductivity (EC) were positively correlated. The mass loadings were as high as 373.33 g day−1 of DBP in the treatment plants located in densely populated cities. DEHP and PGT had their Risk Quotients (RQs) > 1, posing a high risk to biota. DMP, DBP, and LNR posed medium risks as their RQ values were between 0.1 and 1. EDCs are therefore loaded to environmental compartments through either the effluent that loads these pollutants into the receiving aquatic ecosystem or through the UDBS, which are used as fertilizers in agricultural farmlands causing potential toxicological risks to aquatic and terrestrial life.Publication Fish Tissue Bio-concentration and Interspecies Uptake of Heavy Metals from Waste Water Lagoons(Journal of Pollution Effects & Control, 2016-01) Orata, Francis; Birgen, FaithFish products may be important vectors of human exposure to heavy metals. However the understanding of how heavy metals bioconcentrate in different fish species (sp.) through contaminated environments such as wastewater treatment lagoons is very limited. In this study bioconcentration and Interspecies Uptake of Heavy Metals by three fish species (Oreochromis niloticus, Clarius gariespinus and Protopterus aethiopicus) receiving naturally contaminated wastewater was investigated. Tissue bioconcentration factors (BCFs) were estimated within a typical municipal wastewater lagoon, in Kenya. It was assumed that the three fish species were able to reach steady state with their dietary intake of heavy metals and through aqueous contact. Heavy metals concentration of up to 11.72, 11.27, 5.29, 4.12 and 4.74 mg/kg for, muscle, skin, liver, scales and gills respectively were obtained through analysis using ICP-MS instrumentation. The results showed variation in the estimated BCFs obtained for O.niloticus as compared to those obtained for P.aethopicus and C.gariespinus. The tissue BCFs ranged from 0.20 for Cd in scales of C. gariespinus to 11.27 for Zn in muscles of P.aethipicus. Results suggest that heavy metals uptake by the fish sp. and their transfer to various tissue organs do not exclusively depend on concentration levels by aqueous exposure alone but largely depends on their feeding mode, diet and biochemical needs of individual fish sp. Elevated concentrations of Pb and Cd in scales and skin were more than those obtained in muscles and liver which suggested depuration process, considering that Pb and Cd are non-essential metal ions to these fish sp. Fish need to be carefully screened to ensure that unnecessary high level of some toxic trace metals are not transferred to man. The bio concentration and interspecies uptake data estimated here provide a useful tool for predicting human exposure to Heavy metals via fish under different contamination scenariosPublication Green Remediation of Carbamazepine from Water Using Novel Magnetic Iron Modified Carbonized Baggasse: Kinetics, Equilibrium and Mechanistic Studies(Chemical Science International Journal, 2017-03-15) Kimosop, Selly Jemutai-; Okello, Veronica A.; Orata, Francis; Getenga, Zachary M.; Shikuku, Victor O.Baggasse derived biochar magnetically modified with iron (α-Fe2O3-CBG) was fabricated, characterized and applied as a low-cost adsorbent for the removal of carbamazepine (CBZ), a pharmaceutically active compound which has been reported as an emergent water contaminant. Characterization of the synthesized (α-Fe2O3-CBG) composite showed that iron was effectively impregnated onto the carbonized bagasse network. The composite was able to achieve 60.9 % CBZ removal within a period of 4 hours. The time-dependency adsorption data followed the pseudo-second order kinetic law while the intraparticle diffusion model indicated that pore diffusion is not the sole operative rate-determining mechanism with significant boundary layer effects. Freundlich model best explained the equilibrium sorption data. The adsorption extent was also strongly pH-dependent though adsorption mechanism is significantly driven by electrostatic interactions at lower pH. Furthermore, magnetic separation of the contaminant-laden adsorbent was successfully accomplished.Publication Occurrence and Distribution of Per-and Polyfluoroalkyl Substances from Multi-Industry Sources to Water, Sediments and Plants along Nairobi River Basin, Kenya(MDPI, 2022-07-23) Chirikona, Flora; Quinete, Natalia; Gonzalez, Jesleen; Mutua, Gershom; Kimosop, Selly; Orata, FrancisPer-and polyfluoroalkyl substances (PFAS) are ever-present pollutants in the environment. They are persistent and bio-accumulative with deleterious health effects on biota. This study assesses the levels of PFAS in environmental matrices along the Nairobi River, Kenya. An aggregate of 30 PFAS were determined in water, while 28 PFAS were detected in sediments and plants using solid phase extraction then liquid chromatography-mass spectrometric techniques. In water, higher levels of perfluoroundecanoic acids of up to 39.2 ng L −1 were observed. Sediment and plant samples obtained in the midstream and downstream contained higher levels of perfluorooctanoic acid of up to 39.62 and 29.33 ng g −1 , respectively. Comparably, levels of long-chain PFAS were higher in water and sediments than in plants. Sediment/water log distribution of selected PFAS ranged between 2.5 (perfluoroundecanoic acid) and 4.9 (perfluorooctane sulfonate). The level of perfluorooctane sul-fonate (1.83 ng L −1) in water is above the acceptable level in surface water posing high human health and ecological risks. The observed PFAS concentrations and distribution were attributed mainly to multi-industries located along the river, among other sources. The knowledge of PFAS occurrence and distribution in Nairobi River, Kenya, provides important information to local regulatory agencies for PFAS pollution control.Publication Perfluoroalkyl acids in selected wastewater treatment plants and their discharge load within the Lake Victoria basin in Kenya(Springer, 2015-04-11) Chirikona, Florah; Filipovic, Marko; Ooko, Seline; Orata, FrancisA major ecological challenge facing Lake Victoria basin is the influx of chemical contaminants from domestic, hospital, and industrial effluents. Determined levels of perfluoroalkyl acids (PFAAs) in wastewater and sludge from selected wastewater treatment plants (WWTPs) in Kenya are presented and their daily discharge loads calculated for the first time within the Lake Victoria basin. Samples were extracted and separated using solid-phase extraction and ultra-performance liquid chromatography (UPLC)-MS/MS or LC-MS/MS methodology. All sewage sludge and wastewater samples obtained from the WWTPs contained detectable levels of PFAAs in picogram per gram dry weight (d.w.) and in nanogram per liter, respectively. There was variability in distribution of PFAAs in domestic, hospital, and industrial waste with domestic WWPTs observed to contain higher levels. Almost all PFAA homologues of chain length C-6 and above were detected in samples analyzed, with long-chain PFAAs (C-8 and above chain length) being dominant. The discharge from hospital contributes significantly to the amounts of PFAAs released to the municipal water systems and the lake catchment. Using the average output of wastewater from the five WWTPs, a mass load of 1013 mg day−1 PFAAs per day discharged has been calculated, with the highest discharge obtained at Kisumu City (656 mg day−1). The concentration range of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in wastewater was 1.3–28 and 0.9–9.8 ng L−1 and in sludge samples were 117–673 and 98–683 pg g−1, respectively.Publication Simulation guided prediction of zeolites for the sorption of selected anions from water: Machine learning predictors for enhanced loading(Elsevier, 2022-06-01) Sifuna Wanyonyi, Fred; Fidelis, Timothy Tizhe; Louis, Hitler; Kyalo Mutua, Gershom; Orata, Francis; Rhyman, Lydia; Ramasami, Ponnadurai; Pembere, Anthony M. S.The development of highly efficient adsorbents, especially those that can harvest anions like CrO42−, AsO43−, NO3– and PO43−, is one of the principal challenges in the water treatment field. The current study utilized a screening process involving an initial selection of zeolites based on the pore-limiting diameter, followed by GCMC (Grand Canonical Monte Carlo) simulations to identify high-performing zeolites for anion removal. CLO, LTN, MWF, TSC, ITV, PAU, FAU and DFO zeolites are the best performing in terms of loading while several zeolites like ANA, DFT, BIK, SBN and JNT gave no loading at all. In addition, quantum chemical calculations revealed that after adsorption of the anions on the zeolite, there is charge transfer between the zeolite and the anion. The CLO cluster has a charge of 0.64 before adsorption. After adsorption, it attains a charge of −0.06, suggesting that the phosphate ion acts as an electron donor while the CLO cluster, as an electron acceptor. Finally, machine learning was employed to rank the importance of the various descriptors that have influence on the removal of anions in water. Largest overall cavity diameter, mass and accessible pore volume appeared to be the three most important descriptors, thus, tuning the sphere cavity and inter channel diameter as well as engineering the accessible volume of zeolite architectures are of utmost important toward harvesting the desired anions.