• Facebook
  • Twitter
  • YouTube
  • LinkedIn
  • Staff Mail
  • Staff Portal
  • English
  • Deutsch
  • Español
  • Français
  • Italiano
  • Nederlands
  • Polski
  • Português
  • Log In
    New user? Click here to register. Have you forgotten your password?
  • Collections
  • Browse Repository
  1. Home
  2. Browse by Author

Browsing by Author "Ramasami, Ponnadurai"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Publication
    Publication
    Simulation guided prediction of zeolites for the sorption of selected anions from water: Machine learning predictors for enhanced loading
    (Elsevier, 2022-06-01) Sifuna Wanyonyi, Fred; Fidelis, Timothy Tizhe; Louis, Hitler; Kyalo Mutua, Gershom; Orata, Francis; Rhyman, Lydia; Ramasami, Ponnadurai; Pembere, Anthony M. S.
    The development of highly efficient adsorbents, especially those that can harvest anions like CrO42−, AsO43−, NO3– and PO43−, is one of the principal challenges in the water treatment field. The current study utilized a screening process involving an initial selection of zeolites based on the pore-limiting diameter, followed by GCMC (Grand Canonical Monte Carlo) simulations to identify high-performing zeolites for anion removal. CLO, LTN, MWF, TSC, ITV, PAU, FAU and DFO zeolites are the best performing in terms of loading while several zeolites like ANA, DFT, BIK, SBN and JNT gave no loading at all. In addition, quantum chemical calculations revealed that after adsorption of the anions on the zeolite, there is charge transfer between the zeolite and the anion. The CLO cluster has a charge of 0.64 before adsorption. After adsorption, it attains a charge of −0.06, suggesting that the phosphate ion acts as an electron donor while the CLO cluster, as an electron acceptor. Finally, machine learning was employed to rank the importance of the various descriptors that have influence on the removal of anions in water. Largest overall cavity diameter, mass and accessible pore volume appeared to be the three most important descriptors, thus, tuning the sphere cavity and inter channel diameter as well as engineering the accessible volume of zeolite architectures are of utmost important toward harvesting the desired anions.

About Us

  • Mandate
  • Mission & Vision and Core Values
  • Service Charter
  • Board of Trustees
  • Management
  • Give Feedback

Our Programs

  • Multidisciplinary Research
  • Innovation
  • Scientific Events
  • Incubation
  • Strategic Research Interventions
  • Bilateral/Multilateral Research Grants

Find Resources

  • Grants Announcements
  • Careers
  • Shortlisted Concept Notes
  • Tenders
  • Newsletters

Our Partners

British Council
Foreign, Commonwealth & Development Office

© Copyright 2025 - National Research Fund (NRF) Kenya. All rights reserved.

Design by OtCloud