• Facebook
  • Twitter
  • YouTube
  • LinkedIn
  • Staff Mail
  • Staff Portal
  • English
  • Deutsch
  • Español
  • Français
  • Italiano
  • Nederlands
  • Polski
  • Português
  • Log In
    New user? Click here to register. Have you forgotten your password?
  • Collections
  • Browse Repository
  1. Home
  2. Browse by Author

Browsing by Author "Rohm Harald"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Determination of Optimum Conditions for Enzymatic Debranching of Cassava Starch and Synthesis of Resistant Starch Type III using Central Composite Rotatable Design
    (WILEY ONLINE LIBRARY, 2009-07-13) Christopher Mutungi; Onyango Calvin; Jaros Doris; Henle Thomas; Rohm Harald
    Cassava starch was debranched by treatment with isoamylase and pullulanase and the yield of resistant starch type III (RS III) optimized with respect to starch solids concentration (7.5-15%, w/v), incubation time (8-24 h) and enzyme concentration using central composite rotatable design. Higher concentrations of pullulanase (10-35 U/g starch) compared to isoamylase (30–90 mU/g starch) were required to give a similar degree of starch hydrolysis within the experimental domain. A clear debranching end-point was identifiable by following the reducing value, blue value and β-hydrolysis limit of cassava starches debranched using isoamylase. It was difficult to define a debranching endpoint of pullulanase treatment by these parameters due to contaminating α-D-(1→4) activity. The yield of RS III was significantly higher in isoamylolysates and increased steadily with increasing degree of hydrolysis to peak at 57.3%. Purification of the debranched material further increased the RS III yield to 64.1%. Prolonged (24 h) hydrolysis of cassava starch with high concentration of pullulanase (35 U/g) gave lower RS III contents in the purified (34.2%) and unpurified (36.2%) hydrolysates compared to 49.5 and 62.4%, respectively, at moderate pullulanase concentration (22.5 U/g) and incubation time (16 h).
  • Loading...
    Thumbnail Image
    Publication
    Influence of Incubation Temperature and Time on Resistant Starch Type III Formation From Autoclaved and Acid-Hydrolysed Cassava Starch
    (SciencDirect, 2006-11-24) Onyango Calvin; Bley Thomas; Annette Jacob; Henle Thomas; Rohm Harald
    Raw cassava starch, having 74.94 and 0.44 g/100 g resistant starch type II and III (RS II and RS III), respectively, was autoclaved at 121 °C in water, 1, 10 or 100 mmol/L lactic acid. The formation of RS III was evaluated in relation to variable incubation temperature (−20 to 100 °C), incubation time (6–48 h) and autoclaving time (15–90 min). Negligible to low quantities of RS III (0.59–2.42 g/100 g) were formed from autoclaved starch suspended in 100 mmol/L lactic acid, whereas intermediate to high quantities (2.68–9.97 g/100 g) were formed from autoclaved starch suspended in water, 1 or 10 mmol/L lactic acid, except for treatments with water or 10 mmol/L lactic acid incubated at 100 °C for 6 h (1.74 g/100 g). Autoclaving times corresponding to maximum RS III contents were 15 and 45 min for water and 10 mmol/L lactic acid, respectively. Whereas, the RS III fractions from cassava starch suspended in water had melt transitions between 158 and 175 °C with low endothermic enthalpies (0.2–1.6 J/g), the thermal transitions of the acidtreated samples were indistinct.

About Us

  • Mandate
  • Mission & Vision and Core Values
  • Service Charter
  • Board of Trustees
  • Management
  • Give Feedback

Our Programs

  • Multidisciplinary Research
  • Innovation
  • Scientific Events
  • Incubation
  • Strategic Research Interventions
  • Bilateral/Multilateral Research Grants

Find Resources

  • Grants Announcements
  • Careers
  • Shortlisted Concept Notes
  • Tenders
  • Newsletters

Our Partners

British Council
Foreign, Commonwealth & Development Office

© Copyright 2025 - National Research Fund (NRF) Kenya. All rights reserved.

Design by OtCloud