Plant Breeding
Permanent URI for this collection
Browse
Browsing Plant Breeding by Subject "Agro-infiltration"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Publication A virus-induced gene silencing (VIGS) system for functional genomics in the parasitic plant Striga hermonthica(springer, 2014-06-03) Kirigia, Dinah; Runo, Steven; Alakonya, AmosStriga hermonthica is a hemiparasitic weed that infects cereals in Sub Sahara Africa (SSA) resulting in up to 100% grain yield loss. This significant loss in grain yields is a major contributor to food insecurity and poverty in the region. Current strategies to control the parasite are costly, unavailable and remain unpracticed by small-scale farmers, underscoring the need for more economical and sustainable control strategies. Development of resistant germplasm is the most sustainable strategy in the control of S. hermonthica, but is constrained by paucity of resistance genes for introduction into crop germplasm. RNA interference (RNAi) has potential for developing host-derived resistance against S. hermonthica by transformation of host crops with RNAi sequences targeted at critical Striga genes. The application of RNAi in management of S. hermonthica is however constrained by lack of efficient high throughput screening protocols for the candidate genes for silencing, as well as sub optimal delivery of siRNAs into the parasite. In comparison to stable transformation, viral induced gene silencing (VIGS) is a rapid and powerful tool for plant functional genomics and provides an easy and effective strategy in screening for putative candidate genes to target through RNAi. In addition, VIGS allows for a secondary amplification of the RNAi signal increasing the siRNA threshold and facilitates siRNA transport through viral movement proteins. We tested the efficiency of the Tobacco rattle virus (TRV1 and TRV2) VIGS vectors in silencing S. hermonthica phytoene desaturase (PDS) gene through agrodrench and agro-infiltration.