• Facebook
  • Twitter
  • YouTube
  • LinkedIn
  • Staff Mail
  • Staff Portal
  • English
  • Deutsch
  • Español
  • Français
  • Italiano
  • Nederlands
  • Polski
  • Português
  • Log In
    New user? Click here to register. Have you forgotten your password?
  • Collections
  • Browse Repository
  1. Home
  2. Browse by Subject

Browsing by Subject ": mineral-associated organic matter"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Examining the Contributions of Maize Shoots, Roots, and Farming Manure to Stable Soil Organic 2 Carbon Pools in Tropical Smallholder
    (Elsevier B.V, 2022) Nyamasoka-Magonziwa Blessing; Vanek Steven J.; Ojiem John O.; Fonte Steven J.
    Continuous inputs of organic matter are vital for sustaining soil organic carbon (SOC) and productivity of soils in smallholder crop-livestock systems. However, the dynamics of the different inputs i.e. maize shoots, roots and manure used are poorly understood. Along with organic inputs, use of mineral fertilizers can alter the nutrient stoichiometry of organic matter inputs and have implications for SOC turnover. This study sought to understand how maize-based inputs and alterations to nutrient stoichiometry contribute to stable SOC pools. We hypothesized that higher quality litter (i.e., manure) contributes more than maize residues to stable SOC pools and that N, P and S additions, designed to balance the stoichiometry of inputs to reflect the stable fine fraction of soil organic matter (C:N:P:S-10,000:833:200:143) results in greater SOC stabilization. We used a 13C natural abundance approach, where the C4 maize residues were incubated for 11 months to trace C stabilization into different SOC pools within a C3 soil. Contrary to our expectations,we observed greater recovery and stabilization of shoot-derived C (2 X more than manure and 1.63 X more than roots) in the mineral-associated organic matter (MAOM) fraction. Mineral N, P and S additions reduced new C recovery in MAOM by 40% compared to no mineral nutrient’s additions. Our study highlights the importance of residue retention as a strategy to maintain SOC and soil health in smallholder systems, and our results challenge the idea that nutrient additions increase C stabilization of added residues.

About Us

  • Mandate
  • Mission & Vision and Core Values
  • Service Charter
  • Board of Trustees
  • Management
  • Give Feedback

Our Programs

  • Multidisciplinary Research
  • Innovation
  • Scientific Events
  • Incubation
  • Strategic Research Interventions
  • Bilateral/Multilateral Research Grants

Find Resources

  • Grants Announcements
  • Careers
  • Shortlisted Concept Notes
  • Tenders
  • Newsletters

Our Partners

British Council
Foreign, Commonwealth & Development Office

© Copyright 2025 - National Research Fund (NRF) Kenya. All rights reserved.

Design by OtCloud