Agronomy
Permanent URI for this collection
Browse
Browsing Agronomy by Subject "Aflatoxin contamination"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Publication Aflatoxin Contamination of Maize and Groundnut in Burundi: Distribution of Contamination, Identification of Causal Agents and Potential Biocontrol Genotypes of Aspergillus Flavus(Frontiers, 2023) Nsabiyumva Gedeon; Muteg Charity K; Wagacha John M; Mohamed Asha B; Njeru Nancy K; Niyuhire Marie C; Joseph Atehnkeng; Njukwe Emmanuel; Cotty Peter J; OrtegaBeltran Alejandro; Bandyopadhyay RanajitAflatoxin contamination of the staples maize and groundnut is a concern for health and economic impacts across sub-Saharan Africa. The current study (i) determined aflatoxin levels in maize and groundnut collected at harvest in Burundi, (ii) characterized populations of Aspergillus section Flavi associated with the two crops, and (iii) assessed aflatoxin-producing potentials among the recovered fungi. A total of 120 groundnut and 380 maize samples were collected at harvest from eight and 16 provinces, respectively. Most of the groundnut (93%) and maize (87%) contained aflatoxin below the European Union threshold, 4 μg/kg. Morphological characterization of the recovered Aspergillus section Flavi fungi revealed that the L-morphotype of A. flavus was the predominant species. Aflatoxin production potentials of the L-morphotype isolates were evaluated in maize fermentations. Some isolates produced over 137,000 μg/kg aflatoxin B1. Thus, despite the relatively low aflatoxin levels at harvest, the association of both crops with highly toxigenic fungi poses significant risk of post-harvest aflatoxin contamination and suggests measures to mitigate aflatoxin contamination in Burundi should be developed. Over 55% of the L-morphotype A. flavus did not produce aflatoxins. These atoxigenic L-morphotype fungi were characterized using molecular markers. Several atoxigenic genotypes were detected across the country and could be used as biocontrol agents. The results from the current study hold promise for developing aflatoxin management strategies centered on biocontrol for use in Burundi to reduce aflatoxin contamination throughout the value chain.Publication Aflatoxin Contamination of Maize and Groundnut in Burundi: Distribution of Contamination, Identification of Causal Agents and Potential Biocontrol Genotypes of Aspergillus Flavus(Frontier, 2023) Nsabiyumva Gedeon; Mutegi Charity K; Wagacha John M; Mohamed Asha B; Njeru Nancy K; Ndayihanzamaso Privat; Niyuhire Marie C; Joseph Atehnkeng; Njukwe Emmanuel; Callicott Kenneth A; Cotty Peter J; Ortega-Beltran Alejandro; Bandyopadhyay RanajitAflatoxin contamination of the staples maize and groundnut is a concern for health and economic impacts across sub-Saharan Africa. The current study (i) determined aflatoxin levels in maize and groundnut collected at harvest in Burundi, (ii) characterized populations of Aspergillus section Flavi associated with the two crops, and (iii) assessed aflatoxin-producing potentials among the recovered fungi. A total of 120 groundnut and 380 maize samples were collected at harvest from eight and 16 provinces, respectively. Most of the groundnut (93%) and maize (87%) contained aflatoxin below the European Union threshold, 4 μg/kg. Morphological characterization of the recovered Aspergillus section Flavi fungi revealed that the L-morphotype of A. flavus was the predominant species. Aflatoxin production potentials of the L-morphotype isolates were evaluated in maize fermentations. Some isolates produced over 137,000 μg/kg aflatoxin B1. Thus, despite the relatively low aflatoxin levels at harvest, the association of both crops with highly toxigenic fungi poses significant risk of post-harvest aflatoxin contamination and suggests measures to mitigate aflatoxin contamination in Burundi should be developed. Over 55% of the L-morphotype A. flavus did not produce aflatoxins. These atoxigenic L-morphotype fungi were characterized using molecular markers. Several atoxigenic genotypes were detected across the country and could be used as biocontrol agents. The results from the current study hold promise for developing aflatoxin management strategies centered on biocontrol for use in Burundi to reduce aflatoxin contamination throughout the value chain.Publication Influence of Socio-Economic and Agronomic Factors on Aflatoxin and Fumonisin Contamination of Maize in Western Kenya(Willley Online Library, 2019-06-11) Njeru Nancy Karimi; Midega Charles Aura Odhiambo; Muthomi James Wanjohi; Wagacha John Maina; Khan Zeyaur RahmanConsumption of maize contaminated with mycotoxins has been associated with detrimental health effects. A farm survey covering 116 push-pull and 139 non-push-pull cropping systems was conducted to determine the socio-economic and agronomic factors that influence farmers’ knowledge on incidence and contamination of maize by ear rots and associated mycotoxins in western Kenya. All the respondents were smallholder farmers between the ages of 23 and 80 years, with 50% of them being female. Maize samples were collected from the standing crop in the field of each interviewed farmer and analyzed for aflatoxin and fumonisin. Only a small proportion of farmers had knowledge of aflatoxin and ear rots in maize. Overall, less than 20% of maize samples were contaminated with both aflatoxin and fumonisin, and more maize samples were contaminated with fumonisin as compared to aflatoxin. Proportions of maize samples containing higher than the acceptable Kenyan regulatory threshold (10 µg/kg) for aflatoxin and European Commission regulatory threshold (1,000) µg/kg for fumonisin were lower in maize samples from push-pull cropping system. Age of farmer and county of residence were significantly and positively associated with knowledge of aflatoxin, while cropping system, county of residence, and level of education were positively associated with knowledge of maize ear rots. There was strong correlation between knowledge of maize ear rots and knowledge of aflatoxin. Levels of both aflatoxin and fumonisin were significantly and positively associated with the use of diammonium phosphate (DAP) fertilizer at planting. Aflatoxin levels were also positively associated with stemborer damage. Agronomic practices were not significantly different between push-pull and non-push-pull farmers. However, use of DAP fertilizer was the most important agronomic factor since it was associated with both aflatoxin and fumonisin contamination of maize. These results imply that creating awareness is key to mitigation of ear rots and mycotoxin contamination of maize. The results also suggest that the levels of aflatoxin and fumonisin in maize in western Kenya were influenced both by pre-harvest agronomic practices and by the cropping system adopted, push-pull or not.